Predicting Worsted Spinning Performance with Artificial Neural Network Modeling

نویسندگان

  • Rafael Beltran
  • Lijing Wang
  • Xungai Wang
چکیده

For a given fiber spun to a pre-determined yarn specification, the spinning performance of the yarn usually varies from mill to mill. For this reason, it is necessary to develop an empirical model that can encompass all known processing variables that exist in different spinning mills and then to generalize this information and be able to accurately predict yarn quality for an individual mill. This paper reports a method for the prediction of worsted spinning performance through the use of an artificial neural network (ANN) trained with backpropagation. The applicability of artificial neural networks for the prediction of spinning performance is first evaluated against a well established prediction and benchmarking tool (Sirolan Yarnspec). The ANN is subsequently trained with commercial mill data to assess the feasibility of the method as a mill specific performance prediction tool. The incorporation of mill specific data results in an improved fit to the commercial mill data set, suggesting that the proposed method has the ability to predict the spinning performance of a specific mill accurately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی خصوصیات نخ ریسیده شده در ریسندگی فاستونی با استفاده از روش ترکیبی شبکه عصبی با ناظر و بدون ناظر

The uniformity of yarn is one of the major quality parameters which significantly influences on yarn characteristics, warping, weaving, and ultimately fabric production. This parameter depends on fiber properties and spinning process directly. In this study, yarn non-uniformity in a worsted spinning system was predicted by using a hybrid technique involving Kohonen's self-organized and percep...

متن کامل

Using Artificial Neural Network Modeling in Predicting the Amount of Methyl Violet Dye Absorption by Modified Palm Fiber

Bio-absorbent palm fiber was applied for removal of cationic violet methyl dye from water solution. For this purpose, a solid phase extraction method combined with the artificial neural network (ANN) was used for preconcentration and determination of removal level of violet methyl dye. This method is influenced by factors such as pH, the contact time, the rotation speed, and the adsorbent dosag...

متن کامل

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

Predicting the Coefficients of Antoine Equation Using the Artificial Neural Network (TECHNICAL NOTE)

Neural network is one of the new soft computing methods commonly used for prediction of the thermodynamic properties of pure fluids and mixtures. In this study, we have used this soft computing method to predict the coefficients of the Antoine vapor pressure equation. Three transfer functions of tan-sigmoid (tansig), log-sigmoid (logsig), and linear were used to evaluate the performance of diff...

متن کامل

DIFFERENT NEURAL NETWORKS AND MODAL TREE METHOD FOR PREDICTING ULTIMATE BEARING CAPACITY OF PILES

The prediction of the ultimate bearing capacity of the pile under axial load is one of the important issues for many researches in the field of geotechnical engineering. In recent years, the use of computational intelligence techniques such as different methods of artificial neural network has been developed in terms of physical and numerical modeling aspects. In this study, a database of 100 p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009